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Abstract. The expression for the effective-medium dielectric tensor of a superlattice in which
the dielectric tensors of the constituent media are taken in general form (afl elements non-zero)
is employed to describe a plasma/non-plasma, e.g. doped/undoped semiconductor supetlattice in
a magnetic field By at an arbitrary angle to the interface. The properties of surface polaritons
are discussed in detail for the perpendicular (Bg normal to interfaces) and Faraday (B parallel
to interfaces, propagation vector along By) configurations.

1. Introduction

The properties of collective excitations in superlattices have been a subject of increasing
interest in recent years. The equations for optical propagation in a superlattice of alternating
layers of dielectric media have been known since the work of Rytov (1955). More recent
developments are reviewed by Raj and Tilley (1989).

It was realised later (Yariv and Yeh 1977, Raj and Tilley 1985), that in the far infrared
the fact that the wavelength A is much greater than the superlattice period D means that
the superlattice behaves like an anisotropic bulk medium. The same resuit was obtained by
Agranovich and Kravstov (1985) and Liu ez al {(1985) using a simple physical argument
based on the continuity of the tangential components of the electric field E and the
normal components of the displacement vector I across the superlattice interfaces. This
effective-medium description has been applied extensively in far-infrared spectroscopy of
semiconductor superlattices (Dumelow and Tilley 1993). In general it gives a good account
of the data on long-period superlattices together with a clear physical interpretation of
the various spectral features. In the absence of a magnetic field, the effective-medium
approach has been applied (Perkowitz et al 1987, Dumelow ef al 1991a,b) for analysis
of experimental results on semiconductor superlattices in which one or both layers was
doped. In this case the far-infrared response was due to the dielectric functions of the
semiconductor, which included the contribution of the free carriers (plasma response), as
well as the optic phonons. There should be advantages in extending work of this kind by
the inclusion of an applied magnetic field, so that the permittivity of the doped layer takes
a magnetoplasma form. Oliveros et al (1993), made a start by investigating the effective-
medinm approach in the Voigt configuration (the magnetic field parallel to the surface and
perpendicular to the direction of the propagation). In this paper we give a more general
discussion. :

In section 2 we derive the form of the effective dielectric tensor for the general case
when all elements may be non-vanishing. In section 3 the results of section 2 are used to
study the magnetoplasma properties of a superlattice in a magnetic field perpendicular to
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the interfaces. Finally in section 4 the results are applied to the Faraday configuration (the
magnetic field parallel to the surface and to the direction of propagation).

2. The effective dielectric tensor

We consider the geometry of figure 1, in which a magnetic field By is applied at angle
@ to the interface normai. For subsequent applications we take the tensor elements in the
magnetoplasma form, but for the formal derivation we use the general expression

2 3 o o

o Exx Exy €1z

—_ & a o
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where x = a or b.
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Figure 1. A magnetoplasma superlattice. Layers of thickness d, and ¢}, alternate and a magnetic
field is applied at angle @ to the interface normal.

We assume that the dielectric tensor at a point in the medium is independent of the
distance of the point from the surface. This is a reasonable assumption for wavelengths
much larger than the lattice spacing. Furthermore we neglect the wave-vector dependence of
the dielectric tensor. In semiconductor problems this is generally satisfactory for excitations
whose wavelength is large compared to the cyclotron orbit radius or to the carrier mean
free path.

Following Agranovich and Kravstov (1985), Liu et a! (1985) and Djafari Rouhani and
Sapriel (1986) we argue that the field components E, E, and D, are constant over many
layers since they are continuous at the interfaces, whereas the other components are given
by spatial averages over the values in each layer. Thus

(Dyz} = faD;,z + .ﬁJDS'z ) (2a)
(D) =D}=D} (2b)
(Ey,)=E},=ES, (2¢)
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and
(Ex) = fuE* + RED ' @2d)

where f; = &, /(da+dp) and f;, = a’b/(a‘ +dy) are the volume fractions occupied by a and
b. With vse of

D=clw) - E 3)
straightforward algebra gives the effective dielectric tensor in the following general form:

Exx Exy Exz
ew)=|cey: &y &y @)

Ex Ezp &

where
Eax = Expbun/Eefo e f) (5a)
By = (63,80, fa + 0,85, o) (€, fo + &1, 1) (56)
= (& 80 o+ 080 ) (e fo + 85, fa) ' (5¢)
£y = (5,85 fa + £, 88 o)/l fo + 83,13 ‘ (5d)
ey =& fat &0 fot fafolel, ~ B )ED — ) /(L fo+ el f)  (Be)
&y = &y, fa+ sgz fot fafolel, — a}iz)(sﬁx — &)/ (e fo+ £0, ) 5H
= (68,88 fo+ & e o) /(3 fo + &5, fa) (5g)
£y = 5 fa T+ 85 o + fufolel, — xy)(e — 62,0/ (6% fo + €5, /2) (5h)
and
Ea = &5 fa+ Ex Jo + falolEh, — €0 (e, — &3/ (6%, fo + €0, fu)- (50

The above effective-medium tensor is a special case of the more general tensor recently
obtained by Agranovich (1991).

In applications we concentrate on magnetoplasmas, for which a tensor rotation from a
frame with z along B, gives (Abdel-Shahid and Pakhomov 1970, Chiu and Quinn 1972,
Wallis et al 1974)

e¥sin®6 + efcos?d  (ef — ef)sinfcosd —ieZsind
&% (w) (F —ef)sinfcosd £Tcos?6 + ¥ sin®6  ied cosf ()
ie5 sin @ —ief cosf g7

where in numerical illustration we put
1+ 7a
( Z wz)) (7a)

& = %Z % (7b)

w(w? — w"z)
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and

@

P

sg=ag°(1—zﬁ). (c)
S

Here the sums are over species of carrier indexed by j and ay; 1s the cyclotron frequency

for layer ¢« (a or b), defined by w‘;‘j = eBy/ m;‘-"‘", where m;f"‘ is the effective mass; a)gj is

the plasma frequency defined as wg; = n“}’e2 feeam}™, where &3 is the background dielectric
constant and n} the carrier concentration. For simplicity we omit from (7) the optic-phonon
contributions; this is satisfactory as long as @y, and w; are not close to the phonon resonance
frequencies (veststrahl region).

The expressions for the components of the effective-medium tensor for zero applied field,
By = 0, are well known and have been extensively applied in discussion of the far-infrared
optics of semiconductor superlattices (Dumelow and Tilley 1993, Dumelow ef al 1993).
Further, in the case of the Voigt configuration the relations have already been derived by
Oliveros et al (1993). They give a full discussion of the implication for reflectivity, surface
polaritons and attenuated total reflection.

Giuliani and Quinn (1983) first predicted intrasubband superlattice plasmon polaritons
using the random-phase approximation (RPA) for strictly two-dimensional electron sheets. In
the long-wavelength limit the Giuliani—Quinn dispersion relation can be derived classically
via Maxwell’s equations (see e.g. Constantinou and Cottam 1986). For well-width regimes
such that a few subbands are occupied, classical methods break down and the full rRPA
treatment is required (see e.g. Bioss 1983), Finally, for wider well widths and at
ternperatures and doping levels such that very many subbands are occupied, the bulk form
of the dielectric tensor is then valid. Backes et al (1992) have discussed this transition from
two- to three-dimensional behaviour in detail and Bloss (1983) has made a comparison
between the classical and quantum results. In all that follows we assume that any doped
layer is wide enough so that a bulk plasma response is an adequate description; we therefore
ignore any quantum-confinement effects.

3. The perpendicular configuration

Here we take By along the x axis, 8 = 0, so (4) becomes

g 0 0
e(w) = ( 0 &y 8).2) 8)
0 Ezy &z
where
exx = &3 = &35}/ (63 fo + €1 £2) Oa)
Eyy =& =& = S?fa -+ S?fa : (9b)
and
Eyz = —&y =ig = i("‘:‘ifa + ggfb)' @)

The configuration has cylindrical symmetry about the external magnetic field, so the in-
plane elements £,y, & and ¢,, are given by spatial averages of the corresponding elements of
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the two components, while the normal component &, is the same as the parallel component
in zero field.

The dispersion relation for bulk polaritons can be obtained directly from Maxwell’s
wave equation and takes the form

et — (e1kd + ek D) B + ki (e kE + goe3) = 0. (10)

Here we assume propagation in the (x, z) plane, k& = (k,, 0, k;}. Because the main interest
is in surface polaritons we have put k> = —g2, so that 8 will be the inverse decay length
for a superlattice polariton. To simplify notation we put &, = k and define &% = k% — g2¢;
with go = w/c. The solutions ) and B, of (10) for BZ are given by

B2 =K ((e1 + £3)/2¢3) — goer £ [K*((eq — £3)/283)% — I2gde2/es]2. (11)

For a bulk material, f, = 1 or 4, = 1, and (11) agrees with the corresponding result
of Wallis ef al (1974). Depending upon the position in the w—k plane, the following
possibilities may arise: (i) 8; and B; are both real and positive, (ii} one is real and the other
is pure imaginary, or vice versa, (iii) both are complex in which case they are conjugate
or (iv) both are pure imaginary. Following established nomenclature (Wallis et al 1974),
we classify the surface modes corresponding to these possibilities as (i) bonafide surface
modes, (i) pseudosurface modes, (iii) generalized surface modes and (iv) bulk (waveguide)
modes. In all these cases (10) and (11) show that the medium is birefringent, i.e. there
are two values of the wave vector k for a given frequency. As in all birefringent crystals
(Landau and Lifshitz 1960), each of the two allowed modes has a definite polarization.

To derive the surface polariton dispersion relation, we write the fields in the two media
(vacuum x > 0, and the effective medium x < 0), in the form

Er,1) = E(x)expi(kz — wt) (12)
where

E(x) = Eye forx >0 (13a)
and

E(x) = E e P* 4 ByePF forx < Q. (13b)

Here 83 = k* — g5 and By, B, are the two solutions of (11). There is a subtle difference
between (13a) and (13F). As noted above, the effective medium is birefringent, with two
possible values of 8. Consequently the general solution of Maxwell’s equations is a linear
superposition of two terms, as written in (134). In each term, however, the polarization is
definite and therefore all the remaining field amplitudes are determined once a single one
has been fixed. This means that there are just two unknowns in (136), say Eiy and Ej,.
On the other hand, (132) relates to an isotropic medium, so the polarization is not definite.
Therefore (13a) also includes two unknowns, say Eoy and Eo;; Eor and the components of
H are found in terms of these from Maxwell’s equations.

The determination of the surface dispersion relation requires the matching of
electromagnetic boundary conditions at x = @, namely continuity of the tangential
components of the electric and magnetic fields, Ey, E,, H, and H;,. Making use of
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Maxwell’s equations, we express the tangential components in terms of the unknowns Eg,,
Ey;, Eiy and Ejy. The boundary conditions then yield the following dispersion relation:

(k2em/ Bog3)[k? + B1 B2+ Bo(Br + B2)] + Brfa(Br + B2) + Po(B} + B + B ~ Bok? = 0.
(14)

This has the same form as was previously derived for the surface of a bulk medium (Wallis
et al 1974, Chiu and Quinn 1972), because e, equation (8), is formally identical to the bulk
expression.

It is noted here that Kushwaha (1989, 1992) ireated the effect of an applied magnetic
field on the collective magnetoplasma excitations of semiconductor superlattices in the
perpendicular configuration. These investigations were carried out in the framework of
a transfer-matrix method. In the region of high frequency dispersion, which is that of
most interest, the free-space wavelength 1s much greater than the superlattice period D (the
effective-medium limit). This means that the wave number % appearing in the dispersion
equations is small compared with D~!. It is therefore possible to carry out systematic
Taylor expansions to order k2D? for those results in Kushwaha (1992) to drive (14).

In (14), & only appears in even powers, so the dispersion curves for positive and negative
k are identical. That is, the surface-mode propagation is reciprocal, as required on symmetry
grounds for the present case where the magnetic field is perpendicular to the surface (Camley
1987).

It is useful to find the expression for the non-retarded, or electrostatic, limit £ 3 gq,
which is equivalent to ¢ — co. In this case the decay constants are given by

bo=Hh=k (15)
and

B = k(er/en)'’™. (16)
Equation (14) then reduces to

ser/ea) P =-1. (17)

It follows from (16) and (17) that &; and &; must both be negative in order to have a
bonafide surface mode in this limit, which means from (9) that £{ and &§ must be negative.

Typical results for surface-polariton dispersion curves are shown in figure 2 for the
(GaAs/AlAs system. In addition to the surface-mode curves we show the vacuum light line
w = ck and also one of the curves given by § = 0, which from (10) is seen to be equivalent
to k2 = glsv, where ey = (s2 — &2)/¢, is the Voigt permittivity. This is a boundary
of the bulk continuum. In figure 2(a) f, = 1.0, corresponding to bulk GaAs. At low
frequency a surface wave originates on the vacoum light line, then merges with the bulk
continuum at ¢k/wp & 1.3. From ck/fw, = 1.3 to ck/w, = 3.9 is a pseudosurface region
(one 8 real and one pure imaginary); we did not follow the numerical solution through
this region. The surface wave re-emerges from the bulk continuum at ck/ewp = 3.9 and
continues to the electrostatic limit, given by (17}, as ¥ — o0. The bounding frequencies of
the pseudosurface-wave region can be found by solving (11) and (14} simultaneously with
B = 0. This gives

erfey — DV2 4+ (evler + &3) /e — 261)1% — /e (ev — 1DV =0 {18)
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Figure 2. Surface-polariton dispersion curves e versus & for GaAs (doped) AlAs (undoped) with
wefewp = 0.5 and the field perpendicular to the surface. The high-frequency dielectric constants
are £, = 10.89 (GaAs), £,, = 8.16 (AlAs) (Adachi 1985), ——, surface and generalized
surface waves; — — —, bulk continuam boundary (§ = 0); ----,.vacuum light line. (@)
fo=1(bulk GaAs), () f, =09, (c) =05 () fa=01.

which, apari from the third term on the lefi-hand side, agrees with the expression deduced
_ by Wallis ez al (1974).

At a higher frequency in the restricted wave-number range ck/wp between 4.3 and 5.9
we find a generalized surface wave (8| and B, both complex; roots taken with Re{8) > 0)
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Just above the curve k% = g2ey. These results are similar to those found by Wallis ef al
{1974) for bulk InSb.

Figure 2(b) corresponds to f;, = (L.9. The curves are similar to these for bulk GaAs
(figure 2(a)) except that the lower-frequency surface-wave branch occupies a narrower range
of k, as does the generalized surface wave. These branches continue to exist as long as
fu > 0.5. Figure 2(c) is for the critical value f, = 0.5 at which the lower-frequency surface
wave and the generalized surface wave just disappear and the higher-frequency surface wave
just persists to the electrostatic limit. Finally, for f, < 0.3 the surface wave is restricted to
a finite range of ck/w, and takes on the character of a generalized surface wave. This is
illustrated in figure 2(d) for f, = 0.1.

The way in which the dispersion curves change with magnetic field is illustrated in
figure 3, which is drawn for f, = 0.9 so that comparison can be made with figure 2(b).
Figures 2(b} and 3(a) show that for small enough By, i.e. small w/wp, two surface-wave
branches and a generalized surface wave are seen. The frequency interval occupied by the
lower part of the surface wave decreases with increasing field. Numerical exploration shows
that both surface-wave branches disappear at w./w, =~ 0.685 and above this value of w,
only the generalized surface wave appears. As comparison between figure 3(a)—(<) shows,
the frequency of the generalized surface wave increases as w, increases. We also show
in figure 3(c) and (d) the values of the real and imaginary parts of the complex-conjugate
quantities B; and §, in the regions of the generalized surface wave, These are plotied ag
Re(B)/k and Im(B)/k.

4. The Faraday configuration
The geometry with the applied magnetic field By parallel to the direction of propagation,

and therefore in the surface, is known as the Faraday configuration. In this case the effective
dielectric tensor takes the form

e Exp O
e(w) = (syx gy O ) (19}
0 0 &
where
eu = 61 = £87/ (fut] + foe) (20a)
&3y = &2= faf] + fool — fufole3 — €37/ (fas] + fosD) (20b)
By = —&ye = ior = (8123 fu + 165 o) [(fugh + fo£}) : (20¢)
and
82 = &3 = fog} + fotl. (20d)

In this configuration the formal equations for the bulk and surface polaritons are similar
to those for By perpendicular to the surface. The equation that determines the decay
constants f§; is

£28 — (e2k? + £33 + gRer) B + &a (kP2 — gied) =0 @1)
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Figure 3. Surface-polariton dispersion curves « versus k for GaAs {(doped)/AlAs (undoped),
with the field direction as in figure 2 and #, = 0.9, and with (2} wo/wp = 0.6, (b) wefw, = 0.8,
() wefwp = 1.0, {d) wefap = 1.5. (¢) and (d) alse show the curves for Re(8)/k (----) and
Im(B) /% (— --—) in the generalized surface wave,

with solutions

B = (1/269)[(62k3 + £3k2 + g263) = ((62k? — £3k3 + g2e2)? + 4kPgResed) 2. (22)

For f, = 1.0, (22) teduces to the corresponding result of Wallis et al (1974). The
combinations of solutions of (22) may be classified, like those of (11), into surface,
pseudosurface, generalized surface and bulk modes.
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Figure 4. Surface-pelariton dispersion curves e versus
k for GaAs (doped)/AlAs {(undoped) in the Faraday
configuration: the field is applied parallel to the
interface with propagation aleng the field. Material
parameters are as in figure 2, in particular w, fey, = 0.5.
——, surface and generaiized surface waves; — — —,
bulk continuum boundary; - - - -, vacuem light line. (z)
fo=1 (bulk GaAs}, (b) £, =08, {c) f =07._
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Figure 5. Surface-polariton dispersion curves w versus
k for GaAs {doped)AlAs (undoped} with the field
direction as in figure 4 and fu = 0.8: (&) oy /wp =0.2;
&) wefwp = 0.4; (&) we/wp =0.7.

The derivation of the surface-mode dispersion relation follows that given in section 3
for the perpendicular configuration. The E fields in the two media are written in the form of
(13) with independent variables Egy, Eq,, E1y and Ezy. Application of boundary conditions

gives the following dispersion relation:.

(Bo + Br + B2) BLBasz + [BokBy - B2) + BE + B1B2 + 8210263 + Bokaea(l — e2) = 0.

(23)

For fi; = 1 (23) reduces to the dispersion relation of Wallis er al (1974). As when By
is perpendicular to the surface, k appears only in even powers in (23), so propagation is
reciprocal, which is required by symmetry. In the non-retarded limit & 3 g¢ (¢ — o0) the

decay constants are
Bo=p1=k
and
B2 = k(es/e)'?
with the surface-mode frequency given by

exfesfeay? = —1.

(24)

(25)

(26)
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We have calculated numerical results for the same GaAs/AlAs system as in figures 2
and 3 and these are shown in figures 4 and 5. Bulk continuum regions are found by solving
(21} with 8 = 0 and relevant boundary curves are shown in figures 4 and 5. The dispersion
curve for the bulk material, f, = 1, with @./w, = 0.5 is shown in figure 4(a). The
dispersion curve starts on the vacuum light line at @ = w, and ultimately approaches the
limiting non-retarded frequency. For f; < 1 (figure 4(b) and (c)) the surface mode starts
at the upper boundary of a bulk continuum rather than the light line.

Figure 5, drawn for f, = 0.8 for comparison with figure 4(b), shows the way in which
the dispersion curves depend on the magnetic field. Figure 5(a) and (¥} corresponds to
smaller fields (smaller w./ew,) than figure 4(b), while figure 5(c) corresponds to a larger
field. It is seen that as the field value increases the frequency of the surface mode increases,
corresponding to the increase in we, and at the same time the frequency range (the difference
between high-k and low-k frequencies) decreases. For small fields. figure 5(a) and (b), the
dispersion curve starts on the vacuum light line, but for larger fields, figures 4(b) and 5(c),
it starts at the top of the bulk continuum.

5. Conclusions

We have applied the general form of the effective-medium dielectric tensor to
a magnetoplasma/isotropic superlattice with graphical results shown for the GaAs-
{doped)/AlAs (undoped) system. In order to focus on features that are specifically related
to the magnetic field we have omitted reststrahl dispersion from the underlying dielectric
constant. As mentioned in section 1, this is correct as long as the cyclotron and plasma
frequencies w and wy are sufficiently far from the TO and LO frequencies. -If on the other
hand, w; and w, are close to the reststrahl region then mode mixing of a well known kind
oceurs.

The main new results are the surface-polariton dispersion equations and curves for the
perpendicular configuration (section 3) and the Faraday configuration (scction 4). Compared
with the Voigt configuration (Oliveros et al 1993) both these geometries suffer from the
complication that the superlattice is birefringent. As discussed in section 3, this makes the
derivation of the dispersion equation somewhat different. The superlattices support surface
polariton-type modes in both these configurations, as well as in the Voigt configuration,
and the general way in which the dispersion curves vary with magnetic field and with the
volume fraction of the doped constituent is illustrated in sections 3 and 4.

The surface polaritons could be investigated by attenuated total reflection (ATR) an
expression for the ATR reflectivity could be derived and computed without undue difficulty
from the effective dielectric tensor. Substantial information about the dielectric tensor
itself can be obtained by means of simpler techniques, for example oblique-incidence
reflectivity (Dumelow et al 1993). Here again, relevant expressions could be derived in a
straightforward way.
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